Calculus I
 Lecture 13

Feb 19-8:47 AM

Two known limits

Prove $\lim _{h \rightarrow 0} \frac{1-\cos h}{h}$ $=0 \quad \begin{aligned} & \text { By Direct plugin, } \\ & \frac{1-\cos 0}{1} \\ & 0\end{aligned}=\frac{0}{0}$ I.F.
$\lim _{h \rightarrow 0} \frac{1-\cosh h}{h} \cdot \frac{1+\cos h}{1+\cos h}=\lim _{h \rightarrow 0} \frac{1-\cos ^{2} h}{h(1+\cos h)}$

$$
=\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h(1+\cos h)}=\lim _{h \rightarrow 0}\left[\frac{\sin h}{h} \cdot \frac{1}{1+\cos h} \cdot \sin h\right]
$$

$$
81
$$

$$
=\lim _{h \rightarrow 0} \frac{\sin h}{h} \cdot \lim _{h \rightarrow 0} \frac{1}{1+\cos h} \cdot \lim _{h \rightarrow 0} \sin h
$$

$$
1 \cdot \frac{1 \pi^{\frac{1}{2}}}{1+\cos 0} \cdot \sin 0^{0}=1 \cdot \frac{1}{2} \cdot 0=0
$$

Find $\lim _{h \rightarrow 0} \frac{h^{2}}{1-\cos h}=\frac{0^{2}}{1-\cos 0}=\frac{0}{0}$ I.F.

$$
\lim _{h \rightarrow 0} \frac{h^{2}}{1-\cos h} \cdot \frac{1+\cos h}{1+\cos h}=\lim _{h \rightarrow 0} \frac{h^{2}(1+\cos h)}{\sin ^{2} h}
$$

Divide by h^{2}

$$
=\lim _{h \rightarrow 0} \frac{1+\cos h}{\frac{\sin ^{2} h}{h^{2}}}=\frac{1+1}{\left(\lim _{h \rightarrow 0} \frac{\sin ^{h} h}{h}\right)^{2}}=\frac{2}{t^{2}}=2
$$

Feb 27-8:51 AM
Yellow $<$ Green $<$ Blue
Sector
Triangle

Consider the graph below

Feb 27-9:01 AM
find equ of the tangent line to the graph of $f(x)=x^{3}$ at $x=2$.

$$
\begin{align*}
& =x^{3} \text { at } \begin{array}{ll}
x=2 . \\
(2, f(2))=(2,8) & =\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} \\
& =m\left(x-x_{1}\right) \\
& =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2} \\
& =12(x-2) \\
y=12 x-16 &
\end{array} \quad=\lim _{x \rightarrow 2}\left(x^{2}+2 x+4\right) \\
&
\end{align*}
$$

find the eqn of tan. line to the graph of

$$
\begin{aligned}
& f(x)=x^{2}-4 x \text { at } x=3 \text {. } \\
& f(x)=x-4 x \lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3} \\
& f(3,5(3)=(3,-3) \\
& \begin{array}{l}
=\lim _{x \rightarrow 3} \frac{x^{2}-4 x-(-3)}{x-3} \\
=\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x-3}
\end{array} \\
& y-(-3)=2(x-3)=\lim _{x \rightarrow 3} \frac{(x-3)(x-1)}{x-3} \\
& y+3=2 x-6 \\
& y=2 x-9 \\
& =\lim _{x \rightarrow 3}(x-1) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& =2 \\
& x=3
\end{aligned}
$$

slope of tan. line at

Feb 27-9:10 AM

Find eau of tan. line to the graph of

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{-1}{2 \sqrt{x}(2+\sqrt{x})}=\frac{-1}{2 \sqrt{4}(2+\sqrt{4})}=\frac{-1}{16} \quad \frac{a-b}{b-a}=-1 \\
& \begin{array}{l}
y-y_{1}=m\left(x-x_{1}\right) \\
y-\frac{1}{2}=\frac{-1}{16}(x-4)
\end{array} \quad \rightarrow \begin{array}{l}
y=\frac{-1}{16} x+\frac{4}{16}+\frac{1}{2} \\
y=\frac{-1}{16} x+\frac{1}{4}+\frac{1}{2}=y=\frac{-1}{16} x+\frac{3}{4}
\end{array} \\
& \text { En. of } \tan \text {. line }
\end{aligned}
$$

find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=\cos x$.

$$
=\lim _{h \rightarrow 0} \frac{\cos x[\cos h-1]-\sin x \sinh }{h}
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{\cos x(\cosh h-1)}{h}-\frac{\sin x \sin h}{h}\right]
$$

$=\cos x \cdot 0-\sin x \cdot 1$
$=-\operatorname{Sin} x$

Feb 27-9:26 AM

Evaluate $\begin{array}{r}\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h}=\frac{\sin ^{2} 0}{0}=\frac{0}{0} \text { I.F. } \\ \\ x^{2}=x \cdot \chi\end{array}$

$$
\lim _{h \rightarrow 0} \frac{\sin ^{2} h}{h}=\lim _{h \rightarrow 0} \frac{\sin h \cdot \sin h}{h}
$$

$$
=\lim _{h \rightarrow 0} \sin h \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h}
$$

$$
=\sin 0 \cdot 1=0.1=0
$$

Class QE 7
Find slope of the tan, line to the graph of $f(x)=\sqrt{x}$ at $x=9$.

$$
\begin{aligned}
& \text { of } f(x)=\sqrt{x}=\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9} \\
& =\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \\
& =\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{6}
\end{aligned}
$$

